Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Authors

  • Nakhaei, Mohammad Departement of Applied Geology, Faculty of Earth Sciences, Kharazmi University
  • Nazary, Atieh Departement of Applied Geology, Faculty of Earth Sciences, Kharazmi University
  • Yari, Ahmad Reza Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Sciences
Abstract:

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the arsenic reduction process in the aqueous environment under groundwater-like conditions using titanium dioxide (TiO2) nanoparticles (anatase). Methods: In this experimental study, using batch experiments, the effect of changes of time, nanoparticles concentration, and pH factors, were investigated on the changes in arsenic concentration in aqueous solution. The specific surface area of the adsorbent was 200-240m2/g. Data were statistically analyzed by measures of central tendency.   Results: In this study, more than 90% of arsenic concentration in the solution, was absorbed after about 30 minutes of exposure to anatase nanoparticles, however, it took 60 minutes to reach drinking water standard level of arsenic (10µg/L). Increasing adsorbent concentration caused an increase in arsenic adsorption. In natural pH range of groundwater, TiO2 nanoparticle can absorb near 100% of arsenic (200µg/l), but, increase in pH increased this ability. Also, adsorption of arsenic by anatase nanoparticles was more consistent with the Freundlich isotherm.   Conclusion: The results of the current study showed that TiO2 nanoparticles are efficient adsorbents for removal of arsenic from aqueous solutions under natural groundwater conditions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution

In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The ...

full text

Investigation on the Removal of Malachite Green from Aqueous Solutions Using Photocatalysis of Titanium Dioxide and Zinc Oxide Nanoparticles

Background & objectives: Malachite green color has been extensively used in aquaculture industry around the world. The drainage of colored wastewater containing malachite green to aquatic ecosystems has created very serious risks for human health and the environment. The purpose of this study was to investigate the removal of green malachite from aqueous solutions using photocatalysis of titani...

full text

Photocatalytic Removal of Pseudomonas Aeruginosa from Water Using Titanium Dioxide Nanoparticles and UV Irradiation

Background: Titanium dioxide (TiO2)-mediated photocatalysis has been found to be an efficient method of water treatment and is capable of degrading a wide range of organic pollutants and microbial agents with high efficiency. The microorganism Pseudomonas aeruginosa is resistant to chemicals and UV irradiation. Bacteria which are resistant to UV-induced oxidative damage of the cell membrane are...

full text

Survey of Nitrate Removal Method from Aqueous Solutions Using Titanium Dioxide Nano-Photocatalyst

Background & objectives: Because of its very high solubility, nitrate penetrates easily into soil and underground waters. Surface waters such as lakes, reservoirs, and rivers are exposed to nitrate pollution. Photocatalytic processes have a high potential for nitrate removal due to complete oxidation, lack of formation of multi-cycle metabolites and the availability of catalysts. The purpose of...

full text

Clocking the Ultrafast Electron Cooling in Anatase Titanium Dioxide Nanoparticles

The recent identification of strongly bound excitons in roomtemperature anatase TiO2 single crystals and nanoparticles underscores the importance of bulk many-body effects in samples used for applications. Here, for the first time, we unravel the interplay between many-body interactions and correlations in highly excited anatase TiO2 nanoparticles using ultrafast twodimensional deep-ultraviolet...

full text

Removal of Dimethyl Phthalate from Aqueous Solution by Synthetic Modified Nano Zeolite Using Cu2O Nanoparticles

In this paper, a novel nano crystalline sodalite was synthesized and characterized by XRF, XRD, SEM and FTIR analysis. Cu2O nanoparticles (30-60 nm) were loaded on nano zeolite bed and utilized as an adsorbent to remove dimethyl phthalate. The SEM-EDX of modified zeolite indicates that the amount of copper loading on the zeolite was 4.5 wt%. Modified nano zeolite was used as an effective adsorb...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 8

pages  62- 72

publication date 2019-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023